

Study on Soil Structure Interaction under Lateral Load Using Sap-2000 Software

Girish Gowda E N¹, Dr. M S Nagaraja Gupta²

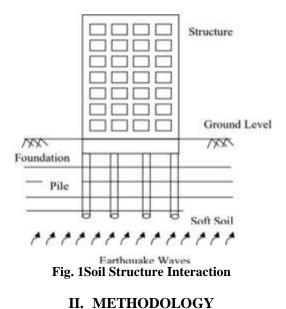
¹PG Student, East West Institute of Technology, Bangalore ²HOD, Department of civil Engineering, East West Institute of Technology, Bangalore

Date	of	Sub	mis	sion	20.	.09.	-2023

Date of Acceptance: 30-09-2023 _____

ABSTRACT: The dynamic interplay between soil and structure, known as soil-structure interaction (SSI), is investigated in this paper, as are the consequences for building behavior during seismic occurrences. The study looks at the effects of altering pile depth, soil type, and soil layers on lateral and vertical displacements under seismic loads in high-rise buildings. A 10-story concrete moment resistant structure frame is studied using 12 SAP Models with varying soil conditions and subjected to zone 5 seismic pressures. While lateral displacement is impacted by pile depth and soil type, vertical displacement follows a direct proportionality to pile depth. Furthermore, the effect of soil layers on displacement is investigated. Comparisons show that lateral displacement is affected by changes in soil carrying capacity. This research increases our understanding of SSI and gives critical insights for constructing resilient high-rise structures in seismically active areas. Please feel free to modify and expand on this abstract in order to appropriately describe the scope and findings of your study.

KEYWORDS:Lateral load, Gravityload, Lateral Displacement, Vertical displacement.


I. INTRODUCTION

Soil-structure interaction (SSI) is the term used to describe the interaction between soil (the ground) and a structure erected on it. It is essentially a reciprocal stress exchange, with the kind of ground and the type of structure having an impact on how the ground-structure system moves. Particularly in seismically active areas is this true. A structural component with a direct connection to the ground is present in the majority of civil engineering constructions. Buildings on the surface are damaged by seismic waves develop from the bedrock through the soil layers during earthquakes. Structural displacements and Earth moving are dependent when such external forces act on these

systems. The term "soil-structure interaction" (SSI) refers to this.

Different soil and structural combinations can either increase or lessen movement and the ensuing damage. A structure would sustain more damage if it were built on hard ground as opposed to soft ground. Foundation sinking, which is exacerbated by a seismic event, is a second interaction effect linked to mechanical properties of soil.

SSI consequences are disregarded in conventional structural design methods. Low-rise buildings and straightforward rigid retaining walls are examples of light structures on moderately stiff soil that do not consider SSI. But for high-rise buildings or substantial structures resting on relatively soft soils, such nuclear power plants or elevated roads on soft soil, the SSI becomes important.

- **Define Research Problem**
- Conduct Literature Review

- Selection of Structures and Load Calculation
- Analysis of Pile Foundation with Varying Pile Depth and Properties in SAP2000
- Result Analysis and Comparison
- Conclusion

Table 1 Characteristics of studied RC frame					
Number of storey	G+10				
Bay width (m)	5				
Number of bays in X-direction	5				
Total width in X-direction (m)	25				
Number of bays in Y-direction	5				
Total width in Y-direction (m) 3	25				
Storey height (m)	3.2				
Total height (m)	35.2				

III. RESULTS AND DISCUSSIONS Table 2: Displacement For Piles Under Different Layers of Soil in X Direction

Maximum Lateral Displacements in X-direction				
Pile depth (m)	Layer th	ickness (n	n)	Displacement (mm)
10	3.3	3.3	3.4	105
15	5	5	5	107
20	6.6	6.6	6.8	99

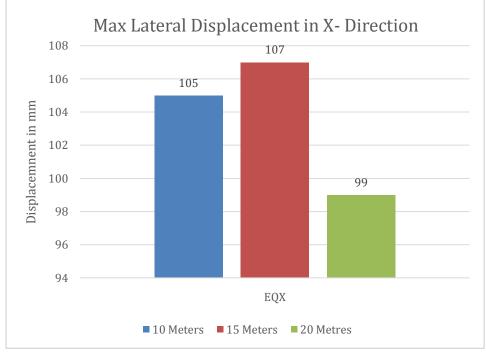


Fig. 2 Maximum Lateral Displacement chart in X direction

From the results it can be noted that piles with 20m depth in different soil layers has least lateral displacement compared to piles with 15m and

10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.

Table 5. Displacement For Thes Under Different Layers of Son in T Direction				
Maximum Lateral Displacer	nents in Y	-direction		
Pile depth (m)	Layer the	ickness (m)		Displacement (mm)
10	3.3	3.3	3.4	105
15	5	5	5	107
20	6.6	6.6	6.8	99

Table 3. Displacement For Piles Under Different Lavers of Soil in V Direction

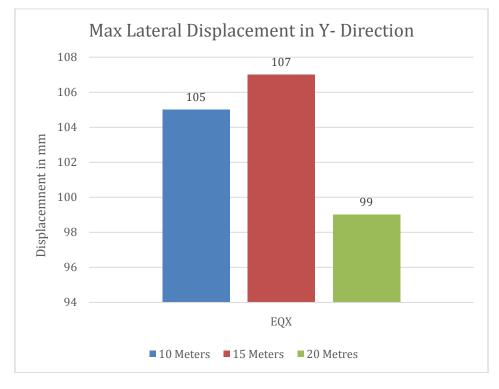


Fig. 3 Maximum Lateral Displacement chart in Y direction

10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.

Maximum Vertical Displacements					
Pile depth	Layer	thic	kness	Displacement	
(m)	(m)			(mm)	
10	3.3	3.3	3.4	6.52	
15	5	5	5	7.13	
20	6.6	6.6	6.7	7.77	

Table 4: Displacement For Piles Under Different Layers of Soil

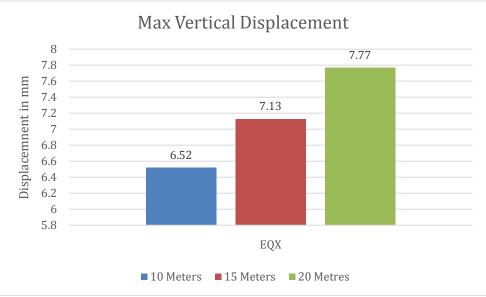
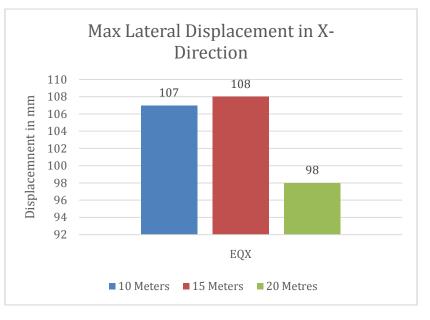
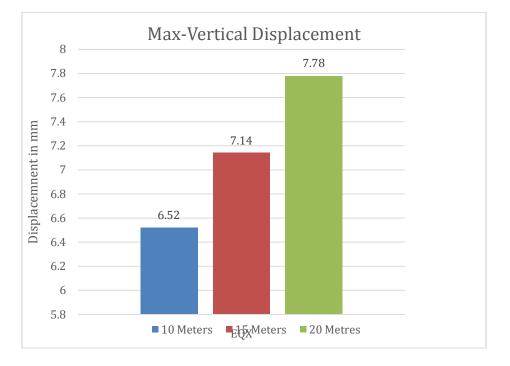



Fig.4 Maximum Vertical Displacement chart

10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.

 Table 5: Displacement For Piles Under Same Layer of Soil in X Direction

Maximum Lateral Displacements in X- direction				
Pile	depth	SBC (kN/m^2)	Displacement	
(m)			(mm)	
10		60	107	
15		60	108	
20		60	98	



10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.

Table 6: Displacement For	Piles Under Same	Layer of Soil
---------------------------	------------------	---------------

Maximum Vertical Displacements			
Pile depth (m)	SBC (kN/m ²)	Displacement	
		(mm)	
10	60	6.52	
15	60	7.14	
20	60	7.78	

Fig.6 Maximum Vertical Displacement chart

From the results it can be noted that piles with 20m depth in same layers of soil has more vertical displacement compared to piles with 15m and 10m depth. Which indicates vertical displacement is directly proportional to the depth of the pile.

Table 7: Displacement For Piles Under Same Layer of Soil in X Direction

Maxir	Maximum Lateral Displacements in X-Direction			
Pile	depth	SBC (kN/m ²)	Displacement	
(m)			(mm)	
10		120	104	
15		120	105	
20		120	95	

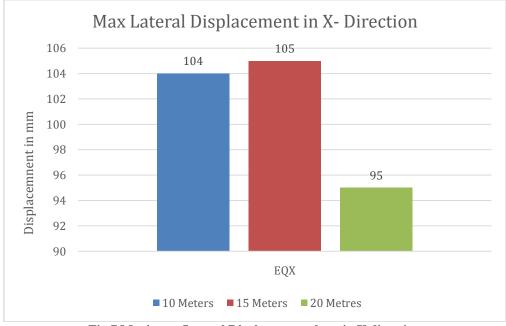
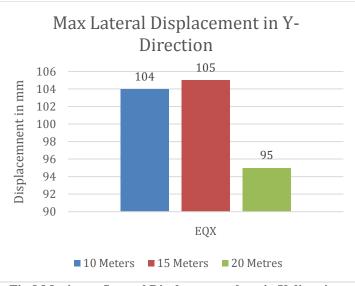
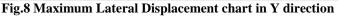




Fig.7 Maximum Lateral Displacement chart in X direction

10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.

Maximum Lateral Displacements in Y- Direction					
Pile	depth	SBC (kN/m ²)	Displacement		
(m)			(mm)		
10		120	104		
15		120	105		
20		120	95		

10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to depth of the pile.

-	-		icements in Y-			
	Direction					
Pile	depth	SBC (kN/m ²)	Displacement			
(m)			(mm)			
10		120	6.52			
15		120	7.14			
20		120	7.78			

Table 9: Displacement For Piles Under Same Layer of Soil

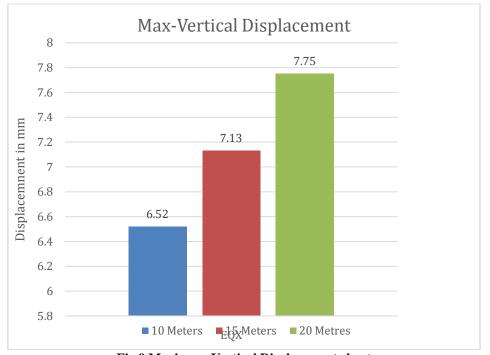


Fig.9 Maximum Vertical Displacement chart

From the results it can be noted that piles with 20m depth in same layers of soil has more vertical displacement compared to piles with 15m and 10m depth. Which indicates vertical displacement is directly proportional to the depth of the pile.

Table 10: Di	spla	cement	For	Piles	s Und	ler Sam	ne Layer	of S	Soil in	X Direction
			-							

Maxii	num I	Lateral	Displac	cements i	in X-			
Direct	Direction							
Pile	depth	SBC (k	N/m^2)	Displacen	nent			
(m)				(mm)				
10		180		117				
15		180		103				
20		180		94				

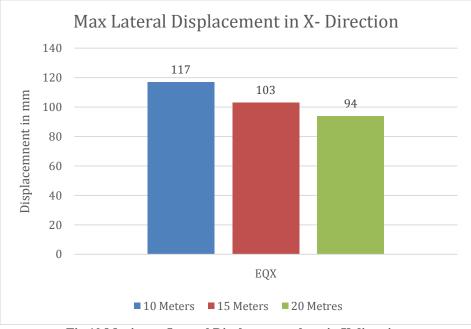
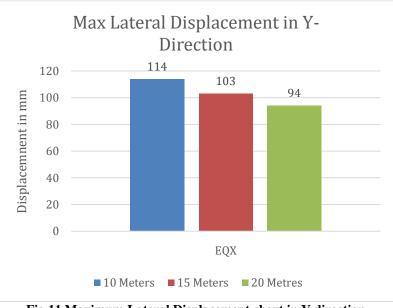



Fig.10 Maximum Lateral Displacement chart in X direction

10m depth. Which indicates lateral displacement is directly proportional to the depth of the pile.

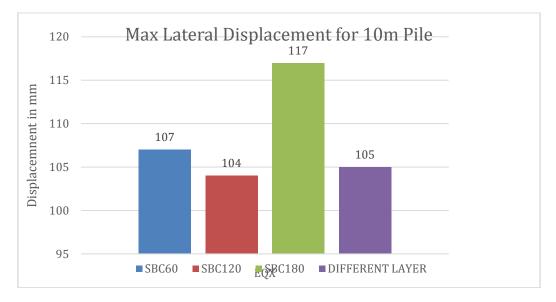
Maxi	Maximum Lateral Displacements in Y-Direction						
Pile	depth	SBC (kN/m ²)	Displacement				
(m)			(mm)				
10		180	114				
15		180	103				
20		180	94				

Table 11: Displacement For Piles Under Same Layer of Soil in Y Direction Image: State of Soil in Y Direction

10m depth. Which indicates lateral displacement is directly proportional to the depth of the pile.

Table 12: Displacement For Piles Under Same Layer of So							
	Maxi	mum V	/ertical	Displa	cements	in	Y-
	Direc	tion					
	Pile	depth	SBC (k	N/m^2)	Displace	ment	
	(m)				(mm)		
	10		180		6.52		
	15		180		7.14		
	20		180		7.78		

Max-Vertical Displacement 7.8 7.71 7.6 7.4 Displacemnent in mm 7.2 7.11 7 6.8 6.52 6.6 6.4 6.2 6 5.8 ■ 10 Meters ■ 20 Metres


Fig.12 Maximum Vertical Displacement chart

From the results it can be noted that piles with 20m depth in same layers of soil has more vertical displacement compared to piles with 15m and 10m depth. Which indicates vertical displacement is directly proportional to the depth of the pile.

Table 13: Displace	ment For Piles Under	r Same and Different	Layer of	Soil in X Direction

Max	Maximum Lateral Displacements in X-Direction						
Pile	depth	SBC (kN/m ²)	Displacement		
(m)					(mm)		
10		60			107		
10		120			104		
10		180			117		
10		Layer	thickn	ess	105		
		-					
		5	5	5			

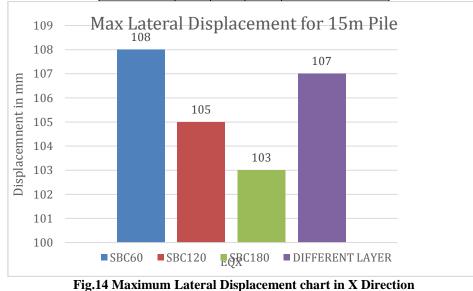
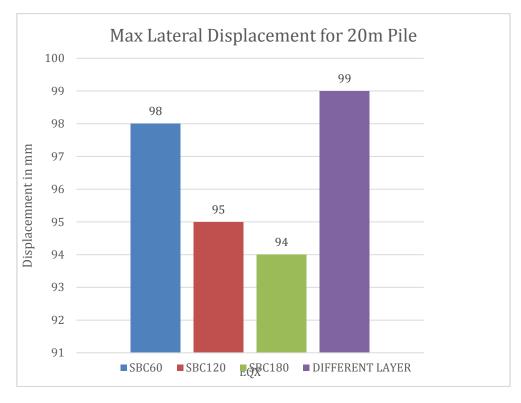


Fig.13 Maximum Lateral Displacement chart in X Direction

From the results it can be noted that piles with SBC 180 in same layers of soil has more lateral displacement compared to piles with SBC 120, 60 and different. But SBC 60 has more displacement compared to Different layer and SBC 120. Which indicates displacement is not directly proportional to the SBC of the pile.

Table 14: Displacement For Piles Under Same and Different Layer of Soil in X Direction Note: The second s

Max	Maximum Lateral Displacements in X-Direction						
Pile	depth	SBC	(kN/m	²)	Displacement		
(m)					(mm)		
15		60			108		
15		120			105		
15		180			113		
15		Layer thickness			107		
		5	5	5			



From the results it can be noted that piles with SBC 60 in same layers of soil has more lateral displacement compared to piles with SBC 120, 60 and different layer. But Different layer has more displacement compared to SBC 60 and SBC 120.

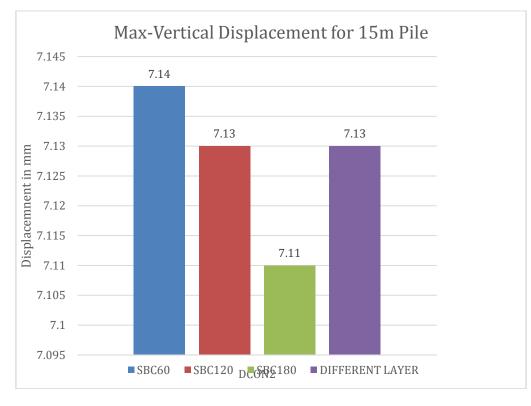
Table 15: Displacement For Piles Under Same and Different Layer of Soil in X Direction

Maximum	Late	eral	Displac	ements in X-
Direction				
Pile depth	SBC	c (kN/r	n^2)	Displacement
(m)				(mm)
20	60			98
20	120			95
20	180			94
20	Layer thickness			99
	6.6	6.6	6.8	

From the results it can be noted that piles with SBC 60 in same layers of soil has more lateral displacement compared to piles with SBC 120 and

180. But Different layer has more displacement compared to SBC 60.

Max	Maximum Vertical Displacements					
Pile	depth	SBC (kN/m ²)	Displacement			
(m)			(mm)			
10		60	6.524			
10		120	6.52			
10		180	6.528			
10		Layer thickness	6.521			



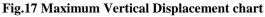
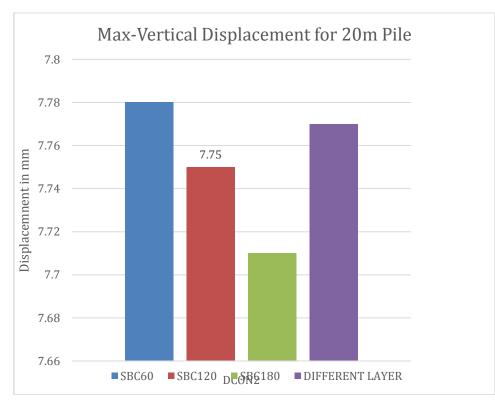

From the results it can be noted that piles with SBC 180 in same layers of soil has more vertical displacement compared to piles with SBC 60, 120 and different layer. But SBC 60 has more displacement compared to SBC 120 and different layer.

Table 17: Dis	placement	For Piles Under	Same and Different	Layer of Soil
ſ				

Maximum Vertical Displacements					
Pile depth	SBC	C (kN/1	n ²)	Displacement	
(m)				(mm)	
15	60			7.14	
15	120			7.13	
15	180			7.11	
15	Lay	er thic	kness	7.13	
	5	5	5		



From the results it can be noted that piles with SBC 60 in same layers of soil has more vertical displacement compared to piles with SBC 120, 180 and different layer. But SBC 60 and different layer are same and have more displacement compared to SBC 180.

Muximum vertieur Displacements				
Pile depth	SBC (kN/m ²) Displacement			
(m)		(mm)		
20	60	7.78		
20	120	7.75		
20	180	7.71		
20	Layer thickness6.66.66.8	7.77		

Table 18: Displacement For Piles Under Same and Different Layer of Soil			
	Maximum Vertical Displacements		

From the results it can be noted that piles with SBC 60 in same layers of soil has more vertical displacement compared to piles with SBC 120, 180 and different layer. But different layer has more displacement compared to SBC 180 and SBC 120.

IV. CONCLUSION

- From the results it can be noted that piles with 20m depth in different soil layers has least lateral displacement compared to piles with 15m and 10m depth. But 15m has more displacement compared to 10m. Which indicates displacement is not directly proportional to the depth of the pile.
- From the results it can be noted that piles with 20m depth have more vertical displacement compared to piles with 15m and 10m depth. which indicates vertical displacement is directly proportional to the depth of the pile.
- From the results it can be noted that piles with 20m depth in same soil has least lateral displacement compared to piles with 15m and 10m depth. Which indicates lateral displacement is directly proportional to the depth of the pile.
- From the results it can be noted that piles

with 20m depth in same soil has more vertical displacement compared to piles with 15m and 10m depth. Which indicates vertical displacement is directly proportional to the depth of the pile.

- From the results it can be noted that piles with 10m depth with SBC of 60KN/m² has more lateral displacement compared to same depth piles with SBC of 120KN/m² and SBC of 180KN/m² as well as different layers.
- With increase in depth of pile, it is seen that displacement is more for piles in soil of different layers compared to piles with soil of same layer properties.

REFERENCES

- [1]. Parth Akbari and Hardik Patel, (2022), A Review on Analysis and Design of Pile Foundation Concealing Different Soil Layers.
- [2]. Panchal M.kushal and Rangari M sunil, (2019), Dynamic Analysis and Comparative Study of Three Piles and Four Piles.
- [3]. Pancha Kushal M and Rangari Sunil M, (2018), Dynamic Analysis of Laterally Loaded Piles in Group.
- [4]. KanakeswaearaoThadapaneni, Sarikonda Venkata sivaraju, Ravi teja Grandhi, (2017),

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads.

- [5]. V. Suneethaand Dr. D.V. Prasad, (2017), Design of Pile Foundation in Black Cotton Soil.
- [6]. ThadapaneniKanakeswararaoand B. Ganesh, (2017), Analysis of pile foundation subjected to lateral and vertical loads.
- [7]. KanakeswararaoThadapaneni, Sarikonda Venkata sivaraju and Ravi teja Grandhi, (2017), Analysis of pile foundation simplified methods to analyse the pile foundation under lateral and vertical loads.
- [8]. P. E. Kavitha1, K. S. Beena, K. P. Narayanan, (2016), A review on soil– structure interaction analysis of laterally loaded piles.
- [9]. SreeshnaK.S, (2016), Analysis and Design of an apartment building.
- [10]. Jayarajan P and Kouzer K.M, (2015), Analysis of Piled Raft Foundations.